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1. Motivation and Objective

The best way of verifying turbulence models is to do a direct comparison between
the various terms and their models!:23. The success of this approach depends upon
the availability of the data for the exact correlations (both experimental and DNS).
The other approach involves numerically solving the differential equations and then
comparing the results with the data. The results of such a computation will depend
upon the accuracy of all the modeled terms and constants. Because of this it is
. sometimes difficult to find the cause of a poor performance by a model. However,
such a calculation is still meaningful in other ways as it shows how a complete
Reynolds stress model performs.

In this study thirteen homogeneous flows are numerically computed using the
second order closure models. We concentrate only on those models which use a
linear (or quasi-linear) model for the rapid term. This, therefore, includes the
Launder ,Reece and Rodi* (LRR) model; the isotropization of production 4 (IP)
model; and the Speziale, Sarkar and Gatski ® (SSG) model. The purpose of this
study is to find out which of the three models performs better and what are their
weaknesses, if any. '

The other work reported here deals with the experimental balnces of the second
moment equations for a buoyant plume. Despite the tremendous amount of activ-
ity toward the second order closure modeling of turbulence, very little experimental
information is available about the budgets of the second moment equations. Part
of the problem stems from our inability to measure the pressure correlations. How-
ever, if everything else appearing in these equations is known from the experiment,
pressure correlations can be obtained as the closing terms. This is the closest we
can come to in obtaining these terms from experiment, and despite the measure-
ment errors which might be present in such balances, the resulting information will
be extremely useful for the turbulence modelers. The purpose of this part of the
work reported here was to provide such balances of the Reynolds stress and heat
flux equations for the buoyant plume.

2.0.0 Work Accomplished

2.1.0 Comparison of Second Order Models in Homogeneous Flows

Before presenting the results a note about the LRR model constants used in the
present study is in order. These constants have evolved to slightly different values
than those orginally recommended by LRR®. The value of the Rotta constant C;
(in the return to isotropy term) used in the present study is 3.6 (note that due to a
different definition of b;; used here the value of C differs by a factor of two). The
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rapid term constant Cj was assigned a value of 0.4 in the original LRR model. In
the present study the value used for this constant is 0.55 which is slightly higher
than the value of 0.5 recommended by Morris®. It was found out that the value of
0.55 led to improvement in the performance of LRR model in all the flows tested
here. (The improvements were slight for the irrotationally strained flows but '

Figure 1 compares the development of Reynolds stresses computed using these
three models in a flow through axisymmetric contraction with the DNS data’.

Here we show a typical case of § = 100.00 (Sk,/e, = 55.73, case AXM). All
the models deviate from the DNS data. However, LRR model gives slightly better
results than the SSG model with IP model performing the worst.

Figures 2 and 3 show a similar comparison for flow through axisymmetric expan-
sion for two different strain rates. For the smaller strain rate flow (S = 0.717, Sk, /e, =
.408, case EXO) SSG model reproduces the uzdevelopment quite well while both IP
and LRR models underpredict it. For the ¥2 component all the models give similar
results. Therefore, for this low strain rate flow SSG model is better than the other
two models. For the flow with higher strain rate (S = 7.17,Sk,/e, = 4.08, case
EXP) the LRR model is in excellent agreement with the DNS data for both the
components while both IP and SSG models show overprediction So for this flow
LRR model works the best. E

Now we show comparisons for the distortion of turbulence by plane strain for
four cases of differing strain rates. We start from the lower strain rate case. Figure
4 compares the evolution of the three non-zero Reynolds stress components for the
flow with strain rate S = 2.6 (Sko/€, = 2.309, case PXC), For u2component all
the models underpredict the DNS data. LRR model is slightly better than the SSG
model. IP model is the worst of the three. For v2 component IP model works the
best. LRR model slightly underpredicts v2 while SSG overpredicts it. The third
component w? is overpredicted by all the models with LRR model being better than
the other two. Figure 5 shows the similar comparisons for the highest strain rate
case (S = 25.0, S,k /e, = 22.227, case PXE). All the three models underpredict the
u2component. IP model is-the worst of the three models. LRR model gives slightly
better result than the SSG model for this stress component. For v? component
LRR model is the best and SSG model is the worst of the three. For the w?
component all the three models overpredict the DNS data with LRR mdoel being
closest to the data. From the above four plane strain flow comparisons, we note
that the performance of all the three models deteriorates as the strain rate increases.
However, on the overall LRR model works better than the other two models.

Figure 6 shows the same comparison with the homogeneous shear flow experiment?®
(S = 46.8, Sko/e, = 6.46). For the uZcomponent LRR model gives the best result
whereas SSG and IP models overpredict it. For the v? component also the LRR
works the best. SSG model slightly overpredicts the data where as IP model if off
by a larger margin. For the w? component both SSG and IP models reproduce
the data very well whereas LRR model overpredicts the data. For the shear stress
component LRR performs reasonably whereas SSG model slightly overpredicts the
data and IP model is off the data by a higher margin. So, for this experiment, LRR
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model has better overall performance than the other two models.

Last, we discuss the evolution of g2 for the case of rotating homogeneous shear
flow. Since no experimental or DNS data is available for this flow the comparisons
will be made (for two cases) with the LES®. Bardina!® pointed out that in this
case we should be careful in interpreting the comparisons for anything more than
the trends shown by the LES. In all the cases shown here the initial conditions
corresponded to isotropic turbulence with €p/Sk, = 0.296. Figure 7 shows the
comparisons for the three cases of different Rosby numbers (= ©/5). For Q/S = .25
we note that all three models significantly underpredict the LES results for g2 ; SSG
being closest to the LES data and the LRR being the furthest. Qualitatively all
the three models reproduce the LES trends. For the case of /S = 0.50 SSG is in
excellent agreement with the LES results. Both IP and LRR give identical results
and give a smaller value of g2 than the LES. It should be pointed out that SSG
model constants were partially calibrated against this flow. For the third case of
Q/S = 1.0, all the three models give identical results. Since no LES results are
available for this case the only purpose of showing the results is to see how the
three models compare with each other.

2.1.2 Conclusions

Results were shown from numerical computation of various homogeneous turbu-
lent flows using three different turbulence models. All of these models use a linear
(or quasi-linear) model for the rapid part of the pressure strain model. Based on
their overall performance it is found that LRR model works better than both SSG
and IP models. For the irrotationally flows the differences between the models and
DNS data increased with the strain rate with LRR model performing better than
the other two models. For the simple homogeneous shear flow LRR model better
than the SSG model (for the DNS both performed equally good but for the exper-
iment LRR worked better). For the homogeneous shear flows both SSG and LRR
model showed trends similar to those shown by LES with SSG performing better
than the LRR model. It is worth noting that SSG model has seven empirical con-
stants as compared to two in LRR model and on the overall it still does not perform
better than LRR model. Part of the reason for this may be due to the fact that
the SSG model does not satisfy the normalization constraint where as LRR model
does. (Normalization is an exact property of the pressure strain correlation; see
references 4 and 11 for details.) As has been pointed out by Shih and Lumley?®, for
a model of the rapid pressure strain part which is linear in the anisotropic tensor
and satisfies all of its ezact properties, LRR is the most general model.

2.2.0 Experimental Balances for the Second Moments for a Buoyant Plume
2.2.1 Heat Flux Budgets

The transport equation for the vertical (streamwise) heat flux can be written as
gwt . 6wl 10 9 __ T —oT

- owt 19 o 2 (pwl) - T0— — wi——
Uc’)r +Waz rar(”“"t) Bz(wwt) W ~ Y82

’
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) A—; ) - 1.0 ——

- ut%;— - wt%; + gpt? - ;t-ég - (v+ D)t w,; '(1)
Note that the molecular term is written in local cartesian coordinates. The balance
of this equation is shown in figure 8. Advection term is the smallest in this balance
and, therefore, contributes least to the transport of the heat flux wi. It is clear
that in the central core of the flow (r/z < 0.04), the production of this heat flux is
maintained by the mean buoyancy gradients and the turbulent buoyancy force i.e.
the source of energy is the gravitational field. The shear production is relatively
small in this region. Then there is an intermediate region where the production
from mean velocity and gravitational field are of the same order. However, for
r/z > 0.1 (which approximately corresponds to the plume half width), most of the
production is maintained by the mean velocity and buoyancy gradients and the
turbulent buoyancy production is only a small fraction of these two. The closing
term in the heat flux balances is labelled as IT; and represents the sum of the pressure
correlation and the molecular destruction terms i.e.

1, 0p

Ou; Ot
L= tsn ~ 05, o,

The molecular term in (2) is thought to get weaker with increasing Reynolds and
Peclet numbers, eventually approaching a value of zero in the limit of local (small
scale) isotropy. This term was not measured and, therefore, its magnitude relative
to others can not be established. However, in turbulence modeling, it is customary
to combine this term with the pressure correlation term® and, therefore, from that
point of view not knowing each term separately does not reduce the usefulness of
these budgets. Notice that the shape of this term is very similar to the shape of the .
heat flux wt and its magnitude remains large throughout the flow field. '

The equation for the radial heat flux is

Out dut 190, — — —0T
Ua—urt + WE; = - ;g(ruut) - %(wut) - uzg —Wg

- utT - wl— — ;t-—; - (V + I‘)t,ju,j (3)

(2)

The balance of this equation is shown in figure 9. Again, we note that the advection
term is quite small as compared to the other dominant terms in the equation. Unlike
the wt heat flux balance, the shear production is extremely small here. This is
because the gradients of mean radial velocity are much smaller than the gradients in
the mean vertical (streamwise) velocity. There is no turbulent buoyancy production
in this equation and all the production is due to the mean buoyancy gradients. We
note that the term representing sum of the pressure correlation and the molecular
destruction makes up a substantial part of the budget and its shape is similar to
the radial heat flux. We also note that this budget can not be divided into any
subregions, where some phenomenon are more dominant than others, because the
relative magnitude of each of the terms in equation (3) remains the same across the

flow field.
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2.2.2 Reynolds Stress Budgets

The transport equation for the Reynolds stress, within Bussinesq approximation,
is

Uk (T%;) % = — [witzte) x — (@8 Ujk + %50 Ui k)

- 1
+ Biust + Bjuit + ;(uip,j +u;pi) — WU kU (4)

where the viscous diffusion term has been neglected since it will be small as com-
pared to the turbulent diffusion. '

For reasons of convenience, turbulence modelers do not model the pressure cor-
relation term in the form as it appears in the above equation but re-write it in a
different form by separating it into a deviatoric and a non-deviatoric part. Two
ways of doing this have been suggested in the literature and we will look at both of
these before deciding which one to use in the present study. The traditional way of
writing this term is*

' pu—— _
—-p(uip,j +u;ps) =-pp(ui.5 + uji) — ;(pu.-é,-k + Pu;6ik ) & (5)

where the first term on the right hand side is the deviatoric part. The second term
is the so called pressure diffusion term. Lumley!? (1975) has instead suggested the
following separation

. T S 2.,
—(uip; + upi) =— [;(uw,j Fups) - (§—p)(Puk),k5ij] - (3_13)(Puk),k5ij (6)

where the term in the square brackets is the deviatoric part and the last term on
the right hand side is the pressure diffusion term. Regardless of which separation is
employed a correction or model has to be used for the correlation puk. The model
used here is due to Lumley® is given by pux = —q2uy /5. This study indicates that
the use of this model with (5) produces so much pressure diffusion that it negates
the velocity diffusion (i.e. due to U;u;ur). On this basis it was concluded to use the
separation given by (6) in the present study. (For further details see Shabbir!3).
Therefore, using (6) the equation for the Reynolds stress can be re-written as

— 2\ —_ —
Us (@), = — [Uiujuk + %(puk)éij] o (@mE Ujx +T70x Uig) — Biujt — Bjuit
2
{—[;(Uip,j +u;p;) - g;(lmk).k&j]
2 2
— 2005 U 5 t+ 565,‘,'} - -565,'_.,- (N

where € = ¢;;. Note that anisotropic part of the dissipation part has been combined
with the pressure correlation term!!. The term in the curly parenthesis has a zero
trace and will be denoted by ®;; in the rest of the paper. It is this term whose models
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have been proposed. Note that the above equation is exact since no approximations
have been used so far. Now we introduce the model for the pressure diffusion term,
as given above, and with this approximation the above equation becomes

_ SR g . - o
Uy (u,-'u.j),k ~ - [ugujuk + T5-(q2uk)5,-,-] e (u,-uk Uj i + U5z Ui,k) + Biujt + Biuqt
2

Note that due to the model for the pressure diffusion term this is no longer an exact
equation and = has been used to emphasize this fact. It is this equation which will
be balanced out with the experimental data and the term &,; will be obtained as
the closing term. It should be reminded that in addition to the measurement errors,
any uncertainty in the approximation of the pressure diffusion will also be lumped
into ®;;.

The equation for the streamwise Reynolds stress w? is given by

___6w2 dw? ~_l_a 5y_ O may, 210 — 2
U‘9 +W8z~ -3 (rw) (w )+15[ ( ug?) + z(wq)]
3W ——6W 2
- o _ 92" _ <
2uw 5 2w 2 + 2g8wt — 3¢ (9)

The balance of this equation is shown in figure 10. Advection is the smallest of
all the terms. Diffusion term is a gain near the center of the plume and a loss
in the rest of the flow. Also, its magnitude near the center is comparable to the
other dominant terms in the balance. We note that the buoyancy production is
comparable to the production due to mean velocity gradients near the plume center
but over the rest of the flow field the shear production is much larger than the
buoyancy production. It is also interesting to note that the buoyancy production
and dissipation rate approximately balance each other. The closing term in this
balance is ®,, and represents the sum of the pressure correlation term and the
anisotropic part of the dissipation. This term is a loss for the u? budget and we
note that beyond r/z = 0.08 this term and shear productlon approximately balance
each other.
The equation for the radial component u? is given by

: Hu? Ou? 18 _—
ety —_— z_.__ 2) - —— 2 2 (rua? 2
U + W = -5 (rus?) (w )+ 15[ ~(rug?) + z(wq)]
_oU 6U 2
- - —_—— S —
2u B 2uw 32 ®,. 36 (10)

and its balance is shown in figure 11. Obviously the advection of u? has the same
form as the advection of w2. The production due to velocity gradients is a loss
near the plume center and is a gain after about r/z = 0.04. This is because the
radial gradient of the radial mean velocity is positive near the plume center. The
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mechanical production term is not large. The diffusion termi is a loss over most of
the flow field and becomes a gain toward the outer edge of the flow field. The sum
of the pressure correlation term and the anisotropic part of the dissipation rate is
obtained as the closing term in the budget and represents a gain for u2. We further
note that beyond r/z = 0.08 it approximately balances the dissipation rate.
Finally we look at the budget for the shear stress &w as shown in figure 12. Its
equation is given by ' :

oww ouw 1, __ . 8, . __8U __8U oW
U-—a;—+W—a—z~-;E(r?tuw)—b—z(wuw)—uw—a—;—uwa—u o
- W%V?V + gBut — @, (11)

Both advection and the turbulent buoyancy production are of very small magnitude
. and over most of the flow field these approximately balance each other. Neglecting
these two terms would not cause any significant change in the shear stress balance.
We note that the diffusion term is not negligible in this budget. The term @, is
essentially balanced by the difference between the shear production and diffusion
processes. The shape of &, is obviously similar to that of the shear stress and its
peak approximately corresponds to the peak in the shear production.

3. Future Plans

3.1 Turbulence Modeling (with T.-H. Shih)

(a). Compare the performance of the various non-linear second order models in
different homogeneous flows in order to find out their strengths and weakneses. This
will be an extension of the work presented in section 1 of this brief.

(b). To develop and test models for turbulent diffusion terms in the Reynolds
stress equations using Lumley’s theory of third moments!!.

3.2 DNS of Bypass Transistion (with T.-H. Shih and G. Karniadakis).

The bypass transition is an important engineering problem due to its relevence
to turbomachinery environment and, therefore, there is a considerable interest both
at LeRC and at CMOTT to study this phenomenon. We are interested in carrying
out the DNS for this problem both in order to provide a data base for the modeling .
efforts of bypass transition at CMOTT and to study its physics. For the former we
are interesting in finding out what kind of global parameters, if any, are linked to
the transition process. For the later we are interested in finding out, for instance,
what is the effect of anisotropy in the free stream turbulence velocity and length
scale on the transition process.

These simulations will be designed after the experiments of Sohn and Reshotko!*
who studied the bypass transition over a flat plate with differing free stream turbu-
lence intensities. The results of DNS will be compared with these experiments.
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3.2.1 Numerical Scheme.

Currently we are exploring the possibility of using a spectral element code for its
suitability for doing such a DNS. We are inclined to use a spectral element method
because of its higher accuracy and its ease of local grid refinement.

The numerical scheme used in the code involves fractional time discretization
which results in three sets of semi discrete equations. In the first step advection term
is handled explicitly using a third order Adams-Bashforth scheme. In the second
step Poisson equation for pressure is solved implicitly and continuity is satisfied. In
the third fractional step the diffusion terms are accounted implicitly by a second
order Crank-Nicholson method. _

In order to carry out the spatial discretization the flow domain is first decom-
posed into macro elements. Each of these macro elements uses a local cartesian
mesh by employing Gauss-Labatto collocation points. Then within each macro ele-
ment the flow variables are represented as tensor product of Chebychev polynomial.
These representations of the flow variables are then substituted into the governing
equations and discrete equations are obtained by applying the weighted residual
technique.

3.2.2 Test Cases to be run

Several test cases will have to be run in order to validate the code before a full
DNS can be carried out. First of these is to solve the laminar boundary layer flow
over a flat plate in order to insure that the numerical method gives the Blasius
solution. This will also help us explore the various boundary conditions which can
be used at the top boundary and at the outflow and latter can be used for the
mean flow during the DNS. After this has been successfully accomplished the most
unstable mode disturbances based on the linear stability theory will be intorduced.
This will allow comparing their growth rates (in the linear region) with the solutions
from the linear stability theory. The third case will be that of suction and blowing
through the flat plate and the resutls will be compared with those obtained by
previous workers.
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